Kinetic mechanism of human histidine triad nucleotide binding protein 1.
نویسندگان
چکیده
Human histidine triad nucleotide binding protein 1 (hHint1) is a member of a ubiquitous and ancient branch of the histidine triad protein superfamily. hHint1 is a homodimeric protein that catalyzes the hydrolysis of model substrates, phosphoramidate and acyl adenylate, with a high efficiency. Recently, catalytically inactive hHint1 has been identified as the cause of inherited peripheral neuropathy [Zimon, M., et al. (2012) Nat. Genet. 44, 1080-1083]. We have conducted the first detailed kinetic mechanistic studies of hHint1 and have found that the reaction mechanism is consistent with a double-displacement mechanism, in which the active site nucleophile His112 is first adenylylated by the substrate, followed by hydrolysis of the AMP-enzyme intermediate. A transient burst phase followed by a linear phase from the stopped-flow fluorescence assay indicated that enzyme adenylylation was faster than the subsequent intermediate hydrolysis and product release. Solvent viscosity experiments suggested that both chemical transformation and diffusion-sensitive events (product release or protein conformational change) limit the overall turnover. The catalytic trapping experiments and data simulation indicated that the true koff rate of the final product AMP is unlikely to control the overall kcat. Therefore, a protein conformational change associated with product release is likely rate-limiting. In addition, the rate of Hint1 adenylylation was found to be dependent on two residues with pKa values of 6.5 and 8, with the former pKa agreeing well with the nuclear magnetic resonance titration results for the pKa of the active site nucleophile His112. In comparison to the uncatalyzed rates, hHint1 was shown to enhance acyl-AMP and AMP phosphoramidate hydrolysis by 10(6)-10(8)-fold. Taken together, our analysis indicates that hHint1 catalyzes the hydrolysis of phosphoramidate and acyl adenylate with high efficiency, through a mechanism that relies on rapid adenylylation of the active residue, His112, while being partially rate-limited by intermediate hydrolysis and product release associated with a conformational change. Given the high degree of sequence homology of Hint proteins across all kingdoms of life, it is likely that their kinetic and catalytic mechanisms will be similar to those elucidated for hHint1.
منابع مشابه
Structural characterization of human histidine triad nucleotide-binding protein 2, a member of the histidine triad superfamily.
The histidine triad proteins (HITs) constitute a large and ubiquitous superfamily of nucleotide hydrolases. The human histidine triad nucleotide-binding proteins (hHints) are a distinct class of HITs noted for their acyl-AMP hydrolase and phosphoramidase activity. The first high-resolution crystal structures of hHint2 with and without bound AMP are described. The differences between hHint2 and ...
متن کاملThe histidine triad superfamily of nucleotide-binding proteins.
Histidine triad (HIT) proteins were until recently a superfamily of proteins that shared only sequence motifs. Crystal structures of nucleotide-bound forms of histidine triad nucleotide-binding protein (Hint) demonstrated that the conserved residues in HIT proteins are responsible for their distinctive, dimeric, 10-stranded half-barrel structures that form two identical purine nucleotide-bindin...
متن کاملHint, Fhit, and GalT: function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases.
HIT (histidine triad) proteins, named for a motif related to the sequence HphiHphiHphiphi (phi, a hydrophobic amino acid), are a superfamily of nucleotide hydrolases and transferases, which act on the alpha-phosphate of ribonucleotides, and contain a approximately 30 kDa domain that is typically either a homodimer of approximately 15 kDa polypeptides with two active-sites or an internally, impe...
متن کاملNovel reactivity of Fhit proteins: catalysts for fluorolysis of nucleoside 5'-phosphoramidates and nucleoside 5'-phosphosulfates to generate nucleoside 5'-phosphorofluoridates.
Fragile histidine triad (HIT) proteins (Fhits) occur in all eukaryotes but their function is largely unknown. Human Fhit is presumed to function as a tumour suppressor. Previously, we demonstrated that Fhits catalyse hydrolysis of not only dinucleoside triphosphates but also natural adenosine 5'-phosphoramidate (NH2-pA) and adenosine 5'-phosphosulfate (SO4-pA) as well as synthetic adenosine 5'-...
متن کاملIn silico study of fragile histidine triad interaction domains with MDM2 and p53
BACKGROUND Fragile histidine triad (FHIT) is considered as a member of the histidine triad (HIT) nucleotide-binding protein superfamily regarded as a putative tumor suppressor executing crucial role in inhibiting p53 degradation by MDM2. Accumulating evidences indicate FHIT interaction with p53 or MDM2; however, there is no certain study deciphering functional domains of FHIT involving in the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 52 20 شماره
صفحات -
تاریخ انتشار 2013